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Absence of Symmetry Breaking for Systems of Rotors 
with Random Interactions 
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We prove that Gibbs states for the Hamiltonian H =  --~xy Jx) 'Sx " Sy, with the sx 
varying on the N-dimensional unit sphere, obtained with nonrandom boundary 
conditions (in a suitable sense), are almost surely rotationally invariant if J ~  = 
J x j I x  - y j  ~ with Jxy  i.i.d, bounded random variables with zero average, ~ >/1 in 
one dimension, and :~/> 2 in two dimensions. 
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1. I N T R O D U C T I O N  

A typical Hamiltonian for a system of rotors with long-range random 
interaction is 

H= - ~  Jxy]X- Yl-~sx .sy (1.1) 
ry 

where Jxy are i.i.d, random variables with zero average and sx takes values 
on the N-dimensional unit sphere. For  these systems Picco {s) found the 
absence of symmetry breaking for ~ > 3/2 in one dimension and 7 > 3 in 
two dimensions. 

Van Enter and Fr6hlich {3'4) developed methods to study the case ~ > 1 
in one dimension and e > 2 in two dimensions. Here we obtain the absence 
Of symmetry breaking for a class of models that include (1.1) with ~/> 1 in 
one dimension and cr >~ 2 in two dimensions, provided one considers Gibbs 
states obtained with nonrandom boundary conditions (in a sense to be 
precisely defined). For  the same model with discrete symmetry (random 
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Ising model) the absence of spin flip symmetry breaking (and in general the 
absence of phase transitions) in the same hypotheses has been proved for 
c~ > 1 in one dimension but is not believed to hold for ~ = 1. The reasons 
why we must impose the restriction on the boundary conditions in the 
region 1 ~< c~ ~< 3/2 for d =  1 and 2 ~< c~ ~< 3 for d =  2 are the same as in the 
case of the one-dimensional random Ising model (2) and are explained in 
the introduction of ref. 2. We cannot exclude rotational symmetry breaking 
for states obtained from boundary conditions dependent on the realization 
of the interaction. 

2. RESULTS 

For  N a fixed, positive integer, let S N be the N-dimensional unit 
sphere SN = {x ~ R N+ 1 I IIXII = 1 }. For  A c 7/d (we shall be only concerned 
with the cases d =  1 and d =  2) our configuration space in the volume A 
will be SPA = SAN . If A1 = A2  and s ~ SPA2, then s t A 1 will denote the restriction 
of s to A 1 . For  each unordered pair x, y e Z d, x :~ y, let Jxy ~ ~, 

Yx~= ]x- yl =J.y 

with Jxy uniformly bounded, ~ >1 1 for d = 1 and a ~> 2 for d = 2. We define 
the energy HA(S ) for A finite c Y  a and Se~A by 

HA(S) = - Y, YxyS~ .sy (2.1) 
x, ycA,x: l :  y 

where sx .Sy denotes the scalar product of sx and Sy. Given A 1 and A 2 finite 
subsets of 7/d, with A 1 m A 2 = ~ ,  we define the interaction WAt,a2(S (1), S ~2)) 
by 

WAI,A2(S(1) '  S(2)) = - -  2 YxyS}v 1)" S~ 2) (2.2) 
x e A I , y ~ A 2  

When the ]xy decay sufficiently fast with [ x -  y[ the interaction (~ > 1 for 
d =  1 and e > 2 for d =  2) is defined also when one of the two volumes A1, 
A2 is in finite. 

Let s e o~ze and let C~ be the cube with center at zero and side 2n + 1, 

c .=  {xe zal Ix,I ~ n ,  1 <~i<~d} 

Given 0 < n ~ < n 2  and given a configuration ~ e ~ c .  2, we can define the 

Gibbs measure in the volume C~ with boundary conditions g in C~2\C.~ by 

= Z  1 #~,j(~b) -~2~ f ~b(s) exp[ - Hc,~(s) - Wc,,vc,2\c,~(s, ~[ c,2\c~)] dc~ 
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for ~b continuous of J c ,  1, where 

de. ~ s = l-i 
i ~ Cnl 

and Z<~2s is the normalizing constant, 

dsi 

Z,,~,2s = f exp[  - H %  (s) - Wc,~,c~ ~] c,2\c,~) ] dco s 

When ,7~ decays sufficiently fast with the distance between x and y we may 
take rt 2 = ~ in the above formulas, but this is not possible for ~ = 1 in one 
dimension or a = 2 in two dimensions. In the future we shall treat the case 
N = 1. The extension to arbitrary N is immediate. In the case N = 1 we can 
put si = e ie' and we shall use as variable 0~ with 0 ~< 0i < 2u. The sum of two 
angles will be understood modulo 2~. Let C(SPA) be the space of real-valued 
functions on 5tA, continuous with respect to the product topology. An 
element A of C(SP~d) is called a local observable if it depends only on a finite 
number of coordinates and can therefore be identified with an element of 
C(SeA) for some finite A c 71a; in this case we shall say that the support of A 
is contained in A. A state I~ in the infinite volume, i.e., a probability 
measure on 5~za, is said to be rotationally invariant if 

I~(a,A ) = #(A ) (2.3) 

for every A 6 C(5P~d), where for t e ~, a,A is the observable obtained from A 
by rotation of all the angles by t. For  every local observable B we have 

d #(a,B) d 
dt , = u = ~  It(a'A)['=~ for A = a u B  

Therefore in order to verify that a state # is rotationally invariant, it is 
enough to check that for every local observable A 

d 
~lX(a ,A)  = 0  (2.4) 

t = 0  

Given an observable A e C(SPA) and a real-valued function f defined on A, 
we define the observable a * f ( f ) A  by 

a * ( f )  A(O) = A(a( f )O)  (2.5) 

where (a(f)O)x = Ox + f ( x )  (mod 2n). 
Let P,l,,~,0 be the finite-volume Gibbs state in the volume C,1 with 

boundary condition 0 in C,2\Cn~. By applying the Schwarz inequality and 
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simple changes of variables in the definition of Gibbs states, we get the 
following inequality (a particular case of Bogoliubov's inequality; see, e.g., 
ref. 1): 

I~.~,.2,o ~s (or. ( t f )A  ,=0 

<<.#.~,.2,o(A2)#., , .2,o[~Ztza*(tf)(H%Wc.vc.2\c.~)=ol (2.6) 

In the following we shall make use of the estimates contained in the 
following lemma: 

Lemrna 2.1. There exists a constant C such that for arbitrary n~, n2 
(nl < n2), 0 s 5Pz, and for x e Cnl, Y ~ C,,, we have 

~(#~l,n2,0[CoS(Ox -- 0y)Yxy)]) ~< C IlYxy[I 2 (2.7) 

where IlYxyll ~ is the supremum of [Y~y[ as a random variable. 
Moreover, for x ~ C.~, y e C.2\C~ 

~(~, ,  ~=,0[cos(0x - O,)Yxy]) <. c IlYx, II ~ (2.8) 

Proof. We can use the arguments for the analogous bounds in refs. 3 
and 4. We only remark that this is correct since we are dealing with finite- 
volume Gibbs states with fixed (i.e., nonrandom) boundary conditions. We 
write 

/~.l..~,0(cos(0x- Oy) exp[Yxy cos(0x-  0y)]) 
#.~,.~,0(cos(0~ - 0y)) = /~.~,.,2,0(exp [Y~y cos(0~ - 0y)]) (2.9) 

where fi~,.2,o is the Gibbs state with the same Hamiltonian as #.~,.2,0 
except for the interaction between the sites x and y that is put equal to 
zero. If the distance between x and y is sufficiently large, we can develop 
the rhs of (2.9) in power series of Y~ and write 

#.t,.2,0(cos(Ox -- 0.)) = fi.,,.2.0(cos(Ox -- 0.)) + Yxy CI(_J) (2.10) 

where CI(_J) is a function of the interactions of all the interactions Jxy for 
x, y in C.2 bounded uniformly in x and y by a constant C. By using (2.10) 
we get immediately (2.7), since Yxy has zero average and the first term on 
the rhs of (2.10) is independent of Y~. By possibly changing the value of 
the constant, we obtain the inequality for every x and y. Relation (2.8) is 
obtained in the same way. Here, as in the following, we take the conven- 
tion to use the same letter C to indicate possibly different constants. | 
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We are now in the position to prove the following. 

T h e o r e m  2.2. Assume that E (Y~)=0  and that lIJx~llo~const- 
I x - y b - ~  with c~>~ 1 for d =  1 and e>~2 for d = 2 .  Then we can find a 
suitable sequence n~ 1" oe such that for every boundary condition 0 e 5Pz~ and 
every sequence fi~>n i we have that, with probability one with respect 
to the realization of the interaction {Y~}, every state obtained from a 
convergent subsequence of the sequence #~.~,,o is rotationally invariant. 

Proof. Let A be an observable with support in a finite region A. 
Given two positive integers n and t~, n < fi, and a boundary condition 0, we 
want to estimate 

d t=o dt lZ,,,e,o( a ,A ) (2.11) 

Let f be a real-valued function defined in C, such that f ( x ) =  1 for x e A 
(we are assuming that A c C,). Then we have a~A = a �9 (t f)A [see (2.5)]. 
By applying Bogoliubov's inequality, we get that 

2 Ea * (tf)(Hc, + Wc,,c~\c,)] (2.12) ~#,,,,,o( A )#,,,,,,o - ~  t=o 

On the other hand, we have that 

~.,~,o ~ [~* ( t f><nc~ W~.,c~\~o)] ,=o 

= Z Y~Ef(x)-f(y)]2# .... o(COS(Ox-Oy) 
x ,  y ~ C n 

+ ~ f {x )  2 ~, Y~# .... 0(cos(0x-0yl)  
x ~  Cn y e  C n k C n  

(2.13) 

C Y' x C (2.14) 
<<'x,y~C~ ~ [ f ( x ) -  f ( Y ) ] 2 1 x -  yl2--~ +x~C f(X):y~Ce\c, t - Yl :~ 

(d2 ) 
~(u.,~.0 ) 7  I-a �9 (tf)(Hc~ Wc~176 ,=o 

We shall aply Lemma2.1 to estimate the expectations of the 
correlation functions. We get 
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We shall see that  for a sequence n~ tending sufficiently fast to infinity we 
can find a sequence of functions f ( o  defined on 7/a such that:  

(i) There is a sequence ~ ,  n~l" oo and h~<n~, such that  f ( ~  1 for 
x ~ C~. 

(ii) The following condit ion holds: 

E #,,.~,o -~[5*(tf)(Hco,+Wc,,c~,\c,,,)] < o o  (2.15) 
i = 1  ~ y = O  

This implies by (2.12) that  for a lmost  every realization of the inter- 
action, if # is an infinite-volume state obta ined as a limit of  a convergent  
subsequence of #,~,e~,0 and A is a local observable,  then 

d #(cr(t)A) ,=o = 0  (2.16) 

i.e., # is rota t ional ly  invariant.  
Let us now make  the choice of the functions f(o.  As in ref. !, we can 

define 

/;(k)= ~ (1 -cosk-x)  lxl 2~ 
x~Zd\{o} 

for k ~ [ -1c ,  ~]J.  
We note that  E(k) >~ 7 ]kl 2 for k e [ - ~ ,  ~ ] a  with 7 > 0 and that,  for the 

considered values of e, E(k) and its first part ial  derivatives are in 
L2([-7:, ~]a). 

Given ~ > 0 and A finite, A c 7/a, we set, as in ref. 1, 

1 L,A(x) =- - -~  [c~(x)+ h~,A(x)] 
cAuj  

(2.17) 

where 

f~ dk cos (k .x )  
c~(x) = d (2re) a E(k) + e' with Ba= [--~z, ~]d  (2.18) 

and 

fB dk 1 - c o s ( k . x )  
c~(O)-c~(x)= d(2~)a E(k)+e for x~A (2.19) 

h~.A(x) = 0 otherwise. 
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For the first term on the rhs of (2.14) we have, by aplying Parseval's 
formula, 

1 dk 2 
[f~,A(x)--f~,A(y)] 2 [x_y[2=f_d(-~2n)d[jT~,A(k)l,, E(k) (2.20) 

x ,  y E Cn i 

where, as in the following, given a function f :  2 d ~  C, j~ is the Fourier 
transform of f 

f ( k ) =  ~ f(x)exp(ik.x) 
x ~ _  d 

We can estimate ]f~,A(k)l 2 by 

1 
If~,A(k)[ 2 ~ c~(O)Z [2 Igjk)l 2 + 2 I~,~(k)[ 2] (2.21) 

For ~,A(k) the following estimate holds: 

[h~,A(k)l ~ C diam(A) 2+a (2.22) 

with a constant C independent of A and e. Indeed, 

fB dk 1-c~ Ix-~ fB dk k2 'x'2 (2.23) 
Ih~,A(X)[= ~ (2~)a ~ ~< ~(2~)aE(k~<<,C--~ - 

for x ~ A, and, consequently, 

]~e,A( k)] ~< 2 C]21~2~< Cdiam(A) a+2 (2.24) 
x ~ A  

The rhs of (2.20) can therefore be bounded by 

1 dk 1 Cdiam(A)2d+47<C_~ 
c~(O) ~ ~ (2~) ~ E(k) ~ + A cAu) c~(o) 2 

(2.25) 

Let us consider now the second term on the rhs of (2.14). We have 

C 2 f2,A(X) ~ ~ ~ C  ~ f~,A(x)(ni-[x[) d-2~ (2.26) 
X ~ Cnt y ~ C n i \ C n  t x ~ Cnl 

Let now Pi be an integer with 0 < p i <  n i. We can b o u n d  the rhs of 
(2.26) by 

C ~ c~(x)(n,-py-2~+CpT2 2 Ix]2c~(x) 
x ~ Cpi  x ~ 2 ~d 

+ C[ni - diam(A)] d- 2~ diam(A )2d+ 4 
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where we have used the bound  (2.23) o n  h~,A(X ). Since the first partial  
derivatives of E(k) are in L2([--Tz, ~]d),  we have that  Zx~Z~ IxlZc~(x) is 
finite as long as e > 0. By put t ing together  the est imates (2.25) and (2.27) 
and noticing that,  for the considered values of ~, c,(0) tends to infinity as e 
tends to zero, ~x) we see that  we can find sequences ei ~ 0, fii ~ ~ ,  Pi ~ ~ ,  
C=~Y_ a, so that  (2.15) is verified. This implies that  (2.16) is verified for 
every local observable.  | 
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