Absence of Symmetry Breaking for Systems of Rotors with Random Interactions

Cezar A. Bonato ${ }^{1}$ and Massimo Campanino ${ }^{2}$

Received April 29, 1988; revision received August 15, 1988

Abstract

We prove that Gibbs states for the Hamiltonian $H=-\sum_{x y} \tilde{J}_{x y} s_{x} \cdot s_{y}$, with the s_{x} varying on the N-dimensional unit sphere, obtained with nonrandom boundary conditions (in a suitable sense), are almost surely rotationally invariant if $J_{x y}=$ $J_{x y} /|x-y|^{\alpha}$ with $J_{x y}$ i.i.d. bounded random variables with zero average, $\alpha \geqslant 1$ in one dimension, and $\alpha \geqslant 2$ in two dimensions.

KEY WORDS: Disordered systems; Gibbs states; symmetry breaking.

1. INTRODUCTION

A typical Hamiltonian for a system of rotors with long-range random interaction is

$$
\begin{equation*}
H=-\sum_{x y} J_{x y}|x-y|^{-\alpha} s_{x} \cdot s_{y} \tag{1.1}
\end{equation*}
$$

where $J_{x y}$ are i.i.d. random variables with zero average and s_{x} takes values on the N-dimensional unit sphere. For these systems Picco ${ }^{(5)}$ found the absence of symmetry breaking for $\alpha>3 / 2$ in one dimension and $\alpha>3$ in two dimensions.

Van Enter and Fröhlich ${ }^{(3,4)}$ developed methods to study the case $\alpha>1$ in one dimension and $\alpha>2$ in two dimensions. Here we obtain the absence of symmetry breaking for a class of models that include (1.1) with $\alpha \geqslant 1$ in one dimension and $\alpha \geqslant 2$ in two dimensions, provided one considers Gibbs states obtained with nonrandom boundary conditions (in a sense to be precisely defined). For the same model with discrete symmetry (random

[^0]Ising model) the absence of spin flip symmetry breaking (and in general the absence of phase transitions) in the same hypotheses has been proved for $\alpha>1$ in one dimension but is not believed to hold for $\alpha=1$. The reasons why we must impose the restriction on the boundary conditions in the region $1 \leqslant \alpha \leqslant 3 / 2$ for $d=1$ and $2 \leqslant \alpha \leqslant 3$ for $d=2$ are the same as in the case of the one-dimensional random Ising model ${ }^{(2)}$ and are explained in the introduction of ref. 2 . We cannot exclude rotational symmetry breaking for states obtained from boundary conditions dependent on the realization of the interaction.

2. RESULTS

For N a fixed, positive integer, let S_{N} be the N-dimensional unit sphere $S_{N}=\left\{x \in R^{N+1} \mid\|x\|=1\right\}$. For $\Lambda \subset \mathbb{Z}^{d}$ (we shall be only concerned with the cases $d=1$ and $d=2$) our configuration space in the volume A will be $\mathscr{S}_{A}=S_{N}^{A}$. If $A_{1} \subset A_{2}$ and $s \in \mathscr{S}_{A_{2}}$, then $\left.s\right|_{A_{1}}$ will denote the restriction of s to Λ_{1}. For each unordered pair $x, y \in \mathbb{Z}^{d}, x \neq y$, let $\widetilde{J}_{x y} \in \mathbb{R}$,

$$
\tilde{J}_{x y}=|x-y|^{-\alpha} J_{x y}
$$

with $J_{x y}$ uniformly bounded, $\alpha \geqslant 1$ for $d=1$ and $\alpha \geqslant 2$ for $d=2$. We define the energy $H_{A}(s)$ for A finite $\subset \mathbb{Z}^{d}$ and $s \in \mathscr{S}_{A}$ by

$$
\begin{equation*}
H_{A}(s)=-\sum_{x, y \in A, x \neq y} \tilde{J}_{x y} s_{x} \cdot s_{y} \tag{2.1}
\end{equation*}
$$

where $s_{x} \cdot s_{y}$ denotes the scalar product of s_{x} and s_{y}. Given Λ_{1} and Λ_{2} finite subsets of \mathbb{Z}^{d}, with $\Lambda_{1} \cap A_{2}=\varnothing$, we define the interaction $W_{\Lambda_{1}, A_{2}}\left(s^{(1)}, s^{(2)}\right)$ by

$$
\begin{equation*}
W_{A_{1}, \Lambda_{2}}\left(s^{(1)}, s^{(2)}\right)=-\sum_{x \in A_{1}, y \in A_{2}} \tilde{J}_{x y} s_{x}^{(1)} \cdot s_{y}^{(2)} \tag{2.2}
\end{equation*}
$$

When the $\widetilde{J}_{x y}$ decay sufficiently fast with $|x-y|$ the interaction ($\alpha>1$ for $d=1$ and $\alpha>2$ for $d=2$) is defined also when one of the two volumes Λ_{1}, A_{2} is in finite.

Let $s \in \mathscr{S}_{\mathbb{Z}^{d}}$ and let C_{n} be the cube with center at zero and side $2 n+1$,

$$
C_{n}=\left\{x \in \mathbb{Z}^{d}| | x_{i} \mid \leqslant n, 1 \leqslant i \leqslant d\right\}
$$

Given $0<n_{1}<n_{2}$ and given a configuration $\bar{s} \in \mathscr{S}_{C_{n_{2}}}$, we can define the Gibbs measure in the volume $C_{n_{1}}$ with boundary conditions \bar{s} in $C_{n_{2}} \backslash C_{n_{1}}$ by

$$
\mu_{n_{1} n_{2} s}(\phi)=Z_{n_{1} n_{2} \bar{s}}^{-1} \int \phi(s) \exp \left[-H_{C_{n_{1}}}(s)-W_{C_{n_{1}}, C_{n_{2}} \backslash C_{n_{1}}}\left(s,\left.\bar{s}\right|_{C_{n_{2}} \backslash C_{n_{1}}}\right)\right] d_{C_{n_{1}}} s
$$

for ϕ continuous of $\mathscr{S}_{C_{n_{1}}}$, where

$$
d_{C_{n_{1}}} s=\prod_{i \in C_{n_{1}}} d s_{i}
$$

and $Z_{n_{1} n_{2} \bar{s}}$ is the normalizing constant,

$$
Z_{n_{1} n_{2} \bar{s}}=\int \exp \left[-H_{C_{n_{1}}}(s)-W_{C_{n_{1}}, C_{n_{2}} \mid C_{n_{2}}}\left(s,\left.\bar{s}\right|_{C_{n_{2}} \mid C_{n_{1}}}\right)\right] d_{C_{n_{1}}} s
$$

When $\mathscr{J}_{x y}$ decays sufficiently fast with the distance between x and y we may take $n_{2}=\infty$ in the above formulas, but this is not possible for $\alpha=1$ in one dimension or $\alpha=2$ in two dimensions. In the future we shall treat the case $N=1$. The extension to arbitrary N is immediate. In the case $N=1$ we can put $s_{i}=e^{i \theta_{i}}$ and we shall use as variable θ_{i} with $0 \leqslant \theta_{i}<2 \pi$. The sum of two angles will be understood modulo 2π. Let $C\left(\mathscr{S}_{A}\right)$ be the space of real-valued functions on \mathscr{S}_{A}, continuous with respect to the product topology. An element A of $C\left(\mathscr{S}_{\mathbb{Z}^{d}}\right)$ is called a local observable if it depends only on a finite number of coordinates and can therefore be identified with an element of $C\left(\mathscr{S}_{A}\right)$ for some finite $A \subset \mathbb{Z}^{d}$; in this case we shall say that the support of A is contained in A. A state μ in the infinite volume, i.e., a probability measure on $\mathscr{S}_{\mathbb{Z}^{d}}$, is said to be rotationally invariant if

$$
\begin{equation*}
\mu\left(\sigma_{t} A\right)=\mu(A) \tag{2.3}
\end{equation*}
$$

for every $A \in C\left(\mathscr{S}_{\mathbb{Z}^{d}}\right)$, where for $t \in \mathbb{R}, \sigma_{t} A$ is the observable obtained from A by rotation of all the angles by t. For every local observable B we have

$$
\left.\frac{d}{d t} \mu\left(\sigma_{t} B\right)\right|_{t=u}=\left.\frac{d}{d t} \mu\left(\sigma_{t} A\right)\right|_{t=0} \quad \text { for } \quad A=\sigma_{u} B
$$

Therefore in order to verify that a state μ is rotationally invariant, it is enough to check that for every local observable A

$$
\begin{equation*}
\left.\frac{d}{d t} \mu\left(\sigma_{t} A\right)\right|_{t=0}=0 \tag{2.4}
\end{equation*}
$$

Given an observable $A \in C\left(\mathscr{S}_{A}\right)$ and a real-valued function f defined on Λ, we define the observable $\sigma * f(f) A$ by

$$
\begin{equation*}
\sigma *(f) A(\theta)=A(\sigma(f) \theta) \tag{2.5}
\end{equation*}
$$

where $(\sigma(f) \theta)_{x}=\theta_{x}+f(x)(\bmod 2 \pi)$.
Let $\mu_{n_{1}, n_{1}, \theta}$ be the finite-volume Gibbs state in the volume $C_{n_{1}}$ with boundary condition θ in $C_{n_{2}} \backslash C_{n_{1}}$. By applying the Schwarz inequality and
simple changes of variables in the definition of Gibbs states, we get the following inequality (a particular case of Bogoliubov's inequality; see, e.g., ref. 1):

$$
\begin{align*}
& \mu_{n_{1}, n_{2}, \theta}\left[\frac{d}{d s}\left(\left.\sigma *(t f) A\right|_{t=0}\right]^{2}\right. \\
& \quad \leqslant \mu_{n_{1}, n_{2}, \theta}\left(A^{2}\right) \mu_{n_{1}, n_{2}, \theta}\left[\left.\frac{d^{2}}{d t^{2}} \sigma *(t f)\left(H_{C_{n_{1}}} W_{C_{n_{1}}, C_{n_{2}} \backslash C_{n_{1}}}\right)\right|_{t=0}\right] \tag{2.6}
\end{align*}
$$

In the following we shall make use of the estimates contained in the following lemma:

Lemma 2.1. There exists a constant C such that for arbitrary n_{1}, n_{2} $\left(n_{1}<n_{2}\right), \bar{\theta} \in \mathscr{S}_{\mathbb{Z}}$, and for $x \in C_{n_{1}}, y \in C_{n_{1}}$ we have

$$
\begin{equation*}
\left.\mathbb{E}\left(\mu_{n_{1}, n_{2}, \dot{\theta}}\left[\cos \left(\theta_{x}-\theta_{y}\right) \tilde{J}_{x y}\right)\right]\right) \leqslant C\left\|\widetilde{J}_{x y}\right\|_{\infty}^{2} \tag{2.7}
\end{equation*}
$$

where $\left\|\tilde{J}_{x y}\right\|_{\infty}$ is the supremum of $\left|\tilde{J}_{x y}\right|$ as a random variable.
Moreover, for $x \in C_{n_{1}}, y \in C_{n_{2}} \backslash C_{n_{1}}$

$$
\begin{equation*}
\mathbb{E}\left(\mu_{n_{1}, n_{2}, \theta}\left[\cos \left(\theta_{x}-\bar{\theta}_{y}\right) \widetilde{J}_{x y}\right]\right) \leqslant C\left\|\widetilde{J}_{x y}\right\|_{\infty}^{2} \tag{2.8}
\end{equation*}
$$

Proof. We can use the arguments for the analogous bounds in refs. 3 and 4 . We only remark that this is correct since we are dealing with finitevolume Gibbs states with fixed (i.e., nonrandom) boundary conditions. We write

$$
\begin{equation*}
\mu_{n_{1}, n_{2}, \theta}\left(\cos \left(\theta_{x}-\theta_{y}\right)\right)=\frac{\tilde{\mu}_{n_{1}, n_{2}, \theta}\left(\cos \left(\theta_{x}-\theta_{y}\right) \exp \left[\tilde{J}_{x y} \cos \left(\theta_{x}-\theta_{y}\right)\right]\right)}{\tilde{\mu}_{n_{1}, n_{2}, \theta}\left(\exp \left[\tilde{J}_{x y} \cos \left(\theta_{x}-\theta_{y}\right)\right]\right)} \tag{2.9}
\end{equation*}
$$

where $\tilde{\mu}_{n_{1}, n_{2}, \theta}$ is the Gibbs state with the same Hamiltonian as $\mu_{n_{1}, n_{2}, \theta}$ except for the interaction between the sites x and y that is put equal to zero. If the distance between x and y is sufficiently large, we can develop the rhs of (2.9) in power series of $\widetilde{J}_{x y}$ and write

$$
\begin{equation*}
\mu_{n_{1}, n_{2}, \theta}\left(\cos \left(\theta_{x}-\theta_{y}\right)\right)=\tilde{\mu}_{n_{1}, n_{2}, \theta}\left(\cos \left(\theta_{x}-\theta_{y}\right)\right)+\widetilde{J}_{x y} C_{1}(\underline{J}) \tag{2.10}
\end{equation*}
$$

where $C_{1}(\underline{J})$ is a function of the interactions of all the interactions $J_{x y}$ for x, y in $C_{n_{2}}$ bounded uniformly in x and y by a constant C. By using (2.10) we get immediately (2.7), since $\tilde{J}_{x y}$ has zero average and the first term on the rhs of (2.10) is independent of $\tilde{J}_{x y}$. By possibly changing the value of the constant, we obtain the inequality for every x and y. Relation (2.8) is obtained in the same way. Here, as in the following, we take the convention to use the same letter C to indicate possibly different constants.

We are now in the position to prove the following.
Theorem 2.2. Assume that $\mathbb{E}\left(\tilde{J}_{x y}\right)=0$ and that $\left\|\widetilde{J}_{x y}\right\|_{\infty} \leqslant$ const . $|x-y|^{-\alpha}$ with $\alpha \geqslant 1$ for $d=1$ and $\alpha \geqslant 2$ for $d=2$. Then we can find a suitable sequence $n_{i} \uparrow \infty$ such that for every boundary condition $\bar{\theta} \in \mathscr{S}_{\mathbb{Z}^{d}}$ and every sequence $\bar{n}_{i}>n_{i}$ we have that, with probability one with respect to the realization of the interaction $\left\{\tilde{J}_{x y}\right\}$, every state obtained from a convergent subsequence of the sequence $\mu_{n_{i}, \bar{n}_{i}, \bar{\theta}}$ is rotationally invariant.

Proof. Let A be an observable with support in a finite region A. Given two positive integers n and $\bar{n}, n<\bar{n}$, and a boundary condition $\bar{\theta}$, we want to estimate

$$
\begin{equation*}
\left.\frac{d}{d t} \mu_{n, \bar{n}, \bar{\theta}}\left(\sigma_{t} A\right)\right|_{t=0} \tag{2.11}
\end{equation*}
$$

Let f be a real-valued function defined in C_{n} such that $f(x)=1$ for $x \in A$ (we are assuming that $A \subset C_{n}$). Then we have $\sigma_{t} A=\sigma *(t f) A$ [see (2.5)]. By applying Bogoliubov's inequality, we get that

$$
\begin{align*}
& {\left[\left.\frac{d}{d t} \mu_{n, \bar{n}, \theta}\left(\sigma_{t} A\right)\right|_{t=0}\right]^{2}} \\
& \quad \leqslant \mu_{n, \bar{n}, \bar{\theta}}\left(A^{2}\right) \mu_{n, \bar{n}, \bar{\theta}}\left(\left.\frac{d^{2}}{d t^{2}}\left[\sigma *(t f)\left(H_{C_{n}}+W_{C_{n}, C_{\bar{n}}, C_{n}}\right)\right]\right|_{t=0}\right) \tag{2.12}
\end{align*}
$$

On the other hand, we have that

$$
\begin{align*}
\mu_{n, \bar{n}, \theta} & \left(\left.\frac{d^{2}}{d t^{2}}\left[\sigma *(t f\rangle\left\langle H_{C_{n}}+W_{C_{n}, C_{\bar{n} \backslash C_{n}}}\right)\right]\right|_{t=0}\right) \\
= & \sum_{x, y \in C_{n}} \tilde{J}_{x y}[f(x)-f(y)]^{2} \mu_{n, \bar{n}, \theta}\left(\cos \left(\theta_{x}-\theta_{y}\right)\right. \\
& +\sum_{x \in C_{n}} f(x)^{2} \sum_{y \in C_{\bar{n} \backslash C_{n}}} \tilde{J}_{x y} \mu_{n, \bar{n}, \theta}\left(\cos \left(\theta_{x}-\bar{\theta}_{y}\right)\right) \tag{2.13}
\end{align*}
$$

We shall aply Lemma 2.1 to estimate the expectations of the correlation functions. We get

$$
\begin{align*}
& \mathbb{E}\left(\mu_{n, \tilde{n}, \theta}\left(\left.\frac{d^{2}}{d t^{2}}\left[\sigma *(t f)\left(H_{C_{n}}+W_{\left.C_{n}, C_{\bar{n}}\right) C_{n}}\right)\right]\right|_{t=0}\right)\right. \\
& \quad \leqslant \sum_{x, y \in C_{n}}[f(x)-f(y)]^{2} \frac{C}{|x-y|^{2 \alpha}}+\sum_{x \in C_{n}} f(x)^{2} \sum_{y \in C_{\bar{n} \backslash} \backslash C_{n}} \frac{C}{|x-y|^{2 \alpha}} \tag{2.14}
\end{align*}
$$

We shall see that for a sequence n_{i} tending sufficiently fast to infinity we can find a sequence of functions $f^{(i)}$ defined on \mathbb{Z}^{d} such that:
(i) There is a sequence $\tilde{n}_{i}, \tilde{n}_{i} \uparrow \infty$ and $\tilde{n}_{i}<n_{i}$, such that $f^{(i)}(x)=1$ for $x \in C_{\bar{n}_{i}}$.
(ii) The following condition holds:

$$
\begin{equation*}
\sum_{i=1}^{\infty} \mathbb{E}\left(\mu_{n_{i}, \bar{n}_{i}, \theta}\left(\left.\frac{d^{2}}{d t^{2}}\left[\delta *(t f)\left(H_{C_{n_{i}}}+W_{C_{n_{i}}, C_{\tilde{i}_{i}} C_{n_{i}}}\right)\right]\right|_{y=0}\right)\right)<\infty \tag{2.15}
\end{equation*}
$$

This implies by (2.12) that for almost every realization of the interaction, if μ is an infinite-volume state obtained as a limit of a convergent subsequence of $\mu_{n_{i}, \bar{n}_{i}, \tilde{\theta}}$ and A is a local observable, then

$$
\begin{equation*}
\left.\frac{d}{d t} \mu(\sigma(t) A)\right|_{t=0}=0 \tag{2.16}
\end{equation*}
$$

i.e., μ is rotationally invariant.

Let us now make the choice of the functions $f^{(i)}$. As in ref. 1, we can define

$$
E(k)=\sum_{x \in \mathbb{Z}^{d} \backslash\{0\}}(1-\cos k \cdot x)|x|^{-2 \alpha}
$$

for $k \in[-\pi, \pi]^{d}$.
We note that $E(k) \geqslant \gamma|k|^{2}$ for $k \in[-\pi, \pi]^{d}$ with $\gamma>0$ and that, for the considered values of $\alpha, E(k)$ and its first partial derivatives are in $L^{2}\left([-\pi, \pi]^{d}\right)$.

Given $\varepsilon>0$ and A finite, $A \subset \mathbb{Z}^{d}$, we set, as in ref. 1 ,

$$
\begin{equation*}
f_{\varepsilon, \Lambda}(x)=\frac{1}{c_{\varepsilon}(0)}\left[c_{\varepsilon}(x)+h_{\varepsilon, \Lambda}(x)\right] \tag{2.17}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{\varepsilon}(x)=\int_{B_{d}} \frac{d k}{(2 \pi)^{d}} \frac{\cos (k \cdot x)}{E(k)+\varepsilon}, \quad \text { with } \quad B_{d}=[-\pi, \pi]^{d} \tag{2.18}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{\varepsilon}(0)-c_{\varepsilon}(x)=\int_{B_{d}} \frac{d k}{(2 \pi)^{d}} \frac{1-\cos (k \cdot x)}{E(k)+\varepsilon} \quad \text { for } \quad x \in \Lambda \tag{2.19}
\end{equation*}
$$

$h_{\varepsilon, A}(x)=0$ otherwise.

For the first term on the rhs of (2.14) we have, by aplying Parseval's formula,

$$
\begin{equation*}
\sum_{x, y \in C_{n_{i}}}\left[f_{\varepsilon, A}(x)-f_{\varepsilon, A}(y)\right]^{2} \frac{1}{|x-y|^{2 \alpha}}=\int_{B_{d}} \frac{d k}{(2 \pi)^{d}}\left|\widetilde{f}_{\varepsilon, A}(k)\right|^{2} E(k) \tag{2.20}
\end{equation*}
$$

where, as in the following, given a function $f: \mathbb{Z}^{d} \rightarrow \mathbb{C}, \tilde{f}$ is the Fourier transform of f

$$
\tilde{f}(k)=\sum_{x \in \mathbb{Z}^{d}} f(x) \exp (i k \cdot x)
$$

We can estimate $\left|\widetilde{f}_{\varepsilon, A}(k)\right|^{2}$ by

$$
\begin{equation*}
\left|\tilde{f}_{\varepsilon, A}(k)\right|^{2} \leqslant \frac{1}{c_{\varepsilon}(0)^{2}}\left[2\left|\tilde{c}_{\varepsilon}(k)\right|^{2}+2\left|\tilde{h}_{\varepsilon, A}(k)\right|^{2}\right] \tag{2.21}
\end{equation*}
$$

For $\tilde{h}_{\varepsilon, A}(k)$ the following estimate holds:

$$
\begin{equation*}
\left|\widetilde{\widetilde{f}}_{\varepsilon, A}(k)\right| \leqslant C \operatorname{diam}(A)^{2+d} \tag{2.22}
\end{equation*}
$$

with a constant C independent of Λ and ε. Indeed,

$$
\begin{equation*}
\left|h_{\varepsilon, A}(x)\right|=\left|\int_{B_{d}} \frac{d k}{(2 \pi)^{d}} \frac{1-\cos (k \cdot x)}{E(k)+\varepsilon}\right| \leqslant \frac{|x|^{2}}{2} \int_{B_{d}} \frac{d k}{(2 \pi)^{d}} \frac{k^{2}}{E(k)} \leqslant C \frac{|x|^{2}}{2} \tag{2.23}
\end{equation*}
$$

for $x \in \Lambda$, and, consequently,

$$
\begin{equation*}
\left|\tilde{h}_{\varepsilon, A}(k)\right| \leqslant \sum_{x \in A} \frac{C|x|^{2}}{2} \leqslant C \operatorname{diam}(A)^{d+2} \tag{2.24}
\end{equation*}
$$

The rhs of (2.20) can therefore be bounded by

$$
\begin{equation*}
\frac{1}{c_{\varepsilon}(0)^{2}}\left[\left(\int_{B_{d}} \frac{d k}{(2 \pi)^{d}} \frac{1}{E(k)+\varepsilon}\right)+C \operatorname{diam}(A)^{2 d+4}\right] \leqslant \frac{C}{c_{\varepsilon}(0)}+\frac{C \operatorname{diam}(A)^{2 d+4}}{c_{\varepsilon}(0)^{2}} \tag{2.25}
\end{equation*}
$$

Let us consider now the second term on the rhs of (2.14). We have

$$
\begin{equation*}
\sum_{x \in C_{n_{i}}} f_{\varepsilon, A}^{2}(x) \sum_{y \in C_{n_{i} i} C_{n_{i}}} \frac{C}{|x-y|^{2 \alpha}} \leqslant C \sum_{x \in C_{n_{i}}} f_{\varepsilon, A}^{2}(x)\left(n_{i}-|x|\right)^{d-2 \alpha} \tag{2.26}
\end{equation*}
$$

Let now p_{i} be an integer with $0<p_{i}<n_{i}$. We can bound the rhs of (2.26) by

$$
\begin{gathered}
C \sum_{x \in C_{R_{i}}} c_{\varepsilon}^{2}(x)\left(n_{i}-p_{i}\right)^{d-2 x}+C p_{i}^{-2} \sum_{x \in \mathbb{Z}^{d}}|x|^{2} c_{e}^{2}(x) \\
+C\left[n_{i}-\operatorname{diam}(A)\right]^{d-2 \alpha} \operatorname{diam}(A)^{2 d+4}
\end{gathered}
$$

where we have used the bound (2.23) on $h_{\varepsilon, A}(x)$. Since the first partial derivatives of $E(k)$ are in $L_{2}\left([-\pi, \pi]^{d}\right)$, we have that $\sum_{x \in \mathbb{Z}^{d}}|x|^{2} c_{\varepsilon}^{2}(x)$ is finite as long as $\varepsilon>0$. By putting together the estimates (2.25) and (2.27) and noticing that, for the considered values of $\alpha, c_{\varepsilon}(0)$ tends to infinity as ε tends to zero, ${ }^{(1)}$ we see that we can find sequences $\varepsilon_{i} \rightarrow 0, \tilde{n}_{i} \rightarrow \infty, p_{i} \rightarrow \infty$, $C_{n_{i}} \uparrow \mathbb{Z}^{d}$, so that (2.15) is verified. This implies that (2.16) is verified for every local observable.

REFERENCES

1. C. A. Bonato, J. F. Perez, and A. Klein, J. Stat. Phys. 29:159-175 (1982).
2. M. Campanino, E. Olivieri, and A. C. D. v. Enter, Commun. Math. Phys. 1987:241-255 (1987).
3. A. C. D. v. Enter, J. Stat. Phys. $41: 315$ (1985).
4. A. C. D. v. Enter and J. Fröhlich, Commun. Math. Phys. 98:425-432 (1985).
5. P. Picco, J. Stat. Phys. 32:627-648 (1983).

[^0]: ${ }^{1}$ Departamento de Fisica, Universidade Federal da Paraiba, João Pessosa, Pb, Brazil.
 ${ }^{2}$ Istituto di Matematica, Universita' della Basilicata, Potenza, Italy.

